Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
J Cancer ; 15(10): 3114-3127, 2024.
Article in English | MEDLINE | ID: mdl-38706891

ABSTRACT

Objective: This study investigated the significance of HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) in esophageal cancer (ESCA) and its underlying mechanism in ESCA regulation through the induction of RAC1 ubiquitination and degradation. Methods: Characterization studies of HACE1 in ESCA clinical tissues and cell lines were performed. Next, the effects of HACE1 on the biological behavior of ESCA cells were examined by silencing and overexpressing HACE1. Protein-protein interactions (PPIs) involving HACE1 were analyzed using data from the String website. The function of HACE1 in RAC1 protein ubiquitination was validated using the proteasome inhibitor MG132. The effects of HACE1 on ESCA cells through RAC1 were elucidated by applying the RAC1 inhibitor EHop-016 in a tumor-bearing nude mouse model. To establish the relationship between HACE1 and TRIP12, rescue experiments were conducted, mainly to evaluate the effect of TRIP12 silencing on HACE1-mediated RAC1 regulation in vitro and in vivo. The PPI between HACE1 and TRIP12 and their subcellular localization were further characterized through co-immunoprecipitation and immunofluorescence staining assays, respectively. Results: HACE1 protein expression was notably diminished in ESCA cells but upregulated in normal tissues. HACE1 overexpression inhibited the malignant biological behavior of ESCA cells, leading to restrained tumor growth in mice. This effect was coupled with the promotion of RAC1 protein ubiquitination and subsequent degradation. Conversely, silencing HACE1 exhibited contrasting results. PPI existed between HACE1 and TRIP12, compounded by their similar subcellular localization. Intriguingly, TRIP12 inhibition blocked HACE1-driven RAC1 ubiquitination and mitigated the inhibitory effects of HACE1 on ESCA cells, alleviating tumor growth in the tumor-bearing nude mouse model. Conclusion: HACE1 expression was downregulated in ESCA cells, suggesting that it curbs ESCA progression by inducing RAC1 protein degradation through TRIP12-mediated ubiquitination.

2.
J Infect Dev Ctries ; 18(4): 550-555, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728649

ABSTRACT

INTRODUCTION: Pakistan has been experiencing an extensively drug-resistant (XDR) outbreak of typhoid for some years. We sought to evaluate how the COVID-19 pandemic impacted typhoid epidemiology in Pakistan, from the beginning of the pandemic in 2020 through the end of 2022, and the reduction of COVID-19 cases. METHODOLOGY: We compared national public COVID-19 data with retrospectively obtained patient data of confirmed S. Typhi isolates between January 2019 and December 2022 from Shaukat Khanum Memorial Cancer Hospital and Research Centre and the hospital's extended network of laboratory collection centers across Pakistan. RESULTS: We observed that during the early onset of the COVID-19 pandemic and COVID-19 peaks, typhoid positivity generally decreased. This suggests that restrictions and non-pharmaceutical interventions that limited social interactions and promoted good sanitation and hygiene practices had a positive secondary effect on typhoid. This led to an overall yearly decrease in typhoid positivity between 2019 to 2021. However, the percentage of S. Typhi cases isolated that were ceftriaxone-resistant continued to increase, suggesting the continued dominance of XDR typhoid in Pakistan. In 2022, with the alleviation of pandemic restrictions, we observed increased typhoid positivity and COVID-19 and typhoid positivity started to follow similar trends. CONCLUSIONS: Given the continued presence of COVID-19 along with XDR typhoid in Pakistan, it will be imperative to use differential testing to ensure that the epidemiology of each reported is accurate, the spread of each it contained, and that antibiotics are not misused. The use of approved vaccinations will lessen the burden of both diseases.


Subject(s)
COVID-19 , Salmonella typhi , Typhoid Fever , Typhoid Fever/epidemiology , Pakistan/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Salmonella typhi/drug effects , Salmonella typhi/isolation & purification , Retrospective Studies , SARS-CoV-2 , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology
3.
Int J Biol Macromol ; : 132569, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797303

ABSTRACT

Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.

5.
BMC Pharmacol Toxicol ; 25(1): 31, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685129

ABSTRACT

In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.


Subject(s)
Amides , Antiviral Agents , Delayed-Action Preparations , Drug Liberation , Hydrogels , Pyrazines , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Amides/chemistry , Amides/administration & dosage , Hydrogen-Ion Concentration , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Polyethylene Glycols/chemistry , Cross-Linking Reagents/chemistry
6.
J Drug Target ; : 1-11, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38652480

ABSTRACT

Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells. MSCs are mostly involved in regeneration of tissue, they have also been shown to preferentially migrate to location of several types of tumour in-vivo. Usage of MSCs ought to improve both effectiveness and safety of anti-cancer drugs by enhancing delivery efficiency of anti-cancer therapies to tumour site. Numerous researches has demonstrated that various drugs, when delivered via mesenchymal stem cell mediated delivery can elicit anti-tumour effect of cells in cancers of breast cells and thyroid cells. MSCs have minimal immunogenicity because to lack of co-stimulatory molecule expression, which means there is no requirement for immunosuppression after allogenic transplantation. This current review elaborates recent advancements of mesenchyma stem cell mediated drug delivery of anti-cancer agents along with its mechanism and previously reported studies of drugs manufactured via this drug delivery system.

7.
Health Sci Rep ; 7(4): e2044, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38650729

ABSTRACT

Background and Aim: Obesity affects nearly 650 million adults worldwide, and the prevalence is steadily rising. This condition has significant adverse effects on cardiovascular health, increasing the risk of hypertension, coronary artery disease, heart failure, and atrial fibrillation (AF). While anticoagulation for obese patients with AF is a well-established therapy for the prevention of thromboembolism, the safety and efficacy of different anticoagulants in this specific population are not well explored. This meta-analysis aimed to compare direct oral anticoagulants (DOAC) to vitamin K antagonists in obese populations with AF. Methods: The PRISMA guidelines were followed for this meta-analysis, registered in PROSPERO (CRD42023392711). PubMed, PubMed Central, Embase, Cochrane Library, and Scopus databases were searched for relevant articles from inception through January 2023. Two independent authors screened titles and abstracts, followed by a full-text review in Covidence. Data were extracted in Microsoft Excel and analyzed using RevMan v5.4 using odds ratio as an effect measure. Results: Two thousand two hundred fifty-nine studies were identified from the database search, and 18 were included in the analysis. There were statistically significant reductions in the odds of ischemic and hemorrhagic stroke in the DOAC group compared with the VKA group (OR 0.70, CI 0.66-0.75) and (OR 0.47, CI 0.35-0.62), respectively. In addition, the DOAC group exhibited lower odds of systemic embolism (OR 0.67, CI 0.54-0.83), major bleeding (OR 0.62, CI 0.54-0.72), and composite outcome (OR 0.72, CI 0.63-0.81). Conclusion: Based on the findings from this meta-analysis, DOACs demonstrate superior safety and efficacy in obese patients with AF compared with VKAs. These results may have significant implications for guiding anticoagulation strategies in this patient population.

8.
Chem Biodivers ; : e202301724, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563654

ABSTRACT

The current study aimed to evaluate the physicochemical properties of Fernandoa adenophylla. Powder studies were carried out to estimate the quantitative physicochemical characteristics of the crude drug, including moisture content, ash content, and extractive values. Using a Soxhlet apparatus and different analytical grade solvents, 3 sample extracts of a crude drug were made. To evaluate the potentially toxic nature, an acute oral toxicity study was performed as per OECD guideline no. 423. Sample extracts were tested and analyzed by ANOVA for pharmacological potential (analgesic, antipyretic, and antidiabetic) using Wister-Albino rats. Where physicochemical analysis indicated purity, quality, and presence of organic/inorganic materials in crude drug extracts, no sign of mortality was found up to 2000 mg/kg of body weight of Fernandoa adenophyllas extracts. Analgesic activity was observed in all sample extracts, whereas only chloroform and ethanolic extracts expressed antipyretic and antidiabetic potential. Ethanolic extract was found to be most potent in pharmacological potential as 200mg/kg extract dose exhibited %age pain inhibition of 55.12% and reduced body temperature from 39.78±0.03°C to 37.22±0.02°C in hyperthermic rats. A decrease in blood glucose levels up to 57.88% was observed on the 21st day of the treatment with 500mg/kg ethanolic extract.

9.
AMA J Ethics ; 26(4): E341-347, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564750

ABSTRACT

Reliable, adequate supply of essential items, including quality-assured medicines, is hard to maintain in refugee camps in low- and middle-income countries. Disruption of medicine supply chains delays treatment for displaced persons and drives procurement of poor-quality products, often from unauthorized or unlicensed sellers. This article explains how current strategies and policies disrupt reliable flow of safe medicines to refugee camps and calls on stakeholders to rigorously map medicine supply chains to refugee camps, which would help identify strategies to improve displaced persons' access to quality-assured medicines.


Subject(s)
Refugees , Humans
10.
Sci Total Environ ; 922: 171382, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432369

ABSTRACT

The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.


Subject(s)
Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Food Contamination/prevention & control , Food Contamination/analysis , Pesticides/analysis , Food Safety , Pest Control
11.
ACS Omega ; 9(9): 10498-10516, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463273

ABSTRACT

The purpose of the current research is to formulate a smart drug delivery system for solubility enhancement and sustained release of hydrophobic drugs. Drug solubility-related challenges constitute a significant concern for formulation scientists. To address this issue, a recent study focused on developing PEG-g-poly(MAA) copolymeric nanogels to enhance the solubility of olmesartan, a poorly soluble drug. The researchers employed a free radical polymerization technique to formulate these nanogels. Nine formulations were formulated. The newly formulated nanogels underwent comprehensive tests, including physicochemical assessments, dissolution studies, solubility evaluations, toxicity investigations, and stability examinations. Fourier transform infrared (FTIR) investigations confirmed the successful encapsulation of olmesartan within the nanogels, while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies verified their thermal stability. Scanning electron microscopy (SEM) images revealed the presence of pores on the surface of the nanogels, facilitating water penetration and promoting rapid drug release. Moreover, powder X-ray diffraction (PXRD) studies indicated that the prepared nanogels exhibited an amorphous structure. The nanogel carrier system led to a significant enhancement in olmesartan's solubility, achieving a remarkable 12.3-fold increase at pH 1.2 and 13.29-fold rise in phosphate buffer of pH 6.8 (NGP3). Significant swelling was observed at pH 6.8 compared to pH 1.2. Moreover, the formulated nexus is nontoxic and biocompatible and depicts considerable potential for delivery of drugs and protein as well as heat-sensitive active moieties.

12.
ACS Omega ; 9(9): 10522-10538, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463337

ABSTRACT

Ticagrelor (TCG) is a BCS class IV antiplatelet drug used to prevent platelet aggregation in patients with acute coronary syndrome, having poor solubility and permeability. The goal of this study was to develop a self-nanoemulsifying drug delivery system (SNEDDS) of TCG to improve its solubility and permeability. The excipients were selected based on the maximum solubility of TCG and observed by UV spectrophotometer. Different combinations of oil, surfactant, and co-surfactant (1:1, 2:1, and 3:1) were used to prepare TCG-SNEDDS formulations, and pseudo-ternary phase diagrams were plotted. The nanoemulsion region was observed. Clove oil (10-20%), Tween-80 (45-70%), and PEG-400 (20-45%) were used as an oil, surfactant, and co-surfactant, respectively. The selected formulations (F1, F2, F3, F4, F5, and F6) were analyzed for ζ potential, polydispersity index (PDI), ζ size, self-emulsification test, cloud point determination, thermodynamic studies, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), in vitro dissolution, ex vivo permeation, and pharmacodynamic study. The TCG-SNEDDS formulations exhibited ζ potential from -9.92 to -6.23 mV, a ζ average of 11.85-260.4 nm, and good PDI. The in vitro drug release in phosphate buffer pH 6.8 from selected TCG-SNEDDS F4 was about 98.45%, and F6 was about 97.86%, displaying improved dissolution of TCG in 0.1 N HCl and phosphate buffer pH 6.8, in comparison to 28.05% of pure TCG suspension after 12 h. While the in vitro drug release in 0.1 N HCl from F4 was about 62.03%, F6 was about 73.57%, which is higher than 10.35% of the pure TCG suspension. In ex vivo permeability studies, F4 also exhibited an improved apparent permeability of 2.7 × 10-6versus 0.6708 × 10-6 cm2/s of pure drug suspension. The pharmacodynamic study in rabbits demonstrated enhanced antiplatelet activity from TCG-SNEDDS F4 compared to that from pure TCG suspension. These outcomes imply that the TCG-SNEDDS may serve as an effective means of enhancing TCG's antiplatelet activity by improving the solubility and permeability of TCG.

15.
Saudi Pharm J ; 32(3): 101957, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38313822

ABSTRACT

An orally administered bilayer tablet with Tamsulosin (TAM) as the sustained release (SR) and Finasteride (FIN) as immediate release (IR) was manufactured. A response surface methodology was employed to formulate bilayer tablets with individual release layers, i.e., sustained and immediate release (SR and IR). Independent variables selected in both cases comprise hydroxypropyl methylcellulose (HPMC) as SR polymer, and avicel PH102 in the inner layer while Triacetin and talc in the outer layer, respectively. Tablets were prepared by direct compression, a total of 11 formulations were prepared for inner layer TAM, and 9 formulations for outer layer FIN were designed; these formulations were evaluated for hardness, friability, thickness, %drug content, and %drug release. A central composite design was employed in response surface methodology to design and optimize the formulation. The percentage of drug released was evaluated by in-vitro USP dissolution method of optimized formulation for 0.5, 2, and 6 hrs, and results were 24.63, 52.96, and 97.68 %, respectively. Drug release data was plotted in various kinetic models using a D.D solver, where drug release was first order that is concentration dependent and was best explained by Korsmeyer-Peppa kinetics, as the highest linearity was observed (R2 = 0.9693). However, a very close relationship was also noted with Higuchi kinetics (R2 = 0.9358). The mechanism of drug release was determined through the Korsmeyer model, and exponent "n" was found to be 0.4, indicative of an anomalous diffusion mechanism or diffusion coupled with erosion.

16.
J Liposome Res ; 34(1): 203-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37338000

ABSTRACT

Drug delivery through transdermal route is one of the effective methods for the application of drugs. It overcomes many drawbacks which are encountered with the oral route. Moreover, many drugs are not able to pass through the stratum corneum, which is the main barrier for the transdermal drug delivery. Formation of ultra-deformable vesicles (UDVs) is a novel technique for the transdermal applications of the drugs. Transethosomes (TEs), ethosomes, and transferosomes are all part of the UDV. Because of the presence of increased concentrations of ethanol, phospholipids, and edge activators, TEs provide improved drug permeation through the stratum corneum. Because of the elasticity of TEs, drug penetration into the deeper layer of skin also increases. TEs can be prepared using a variety of techniques, including the cold method, hot method, thin film hydration method, and the ethanol injection method. It increases patient adherence and compliance because it is a non-invasive procedure of administering drugs. Characterization of the TEs includes pH determination, size and shape, zeta potential, particle size determination, transition temperature, drug content, vesicle stability, and skin permeation studies. These vesicular systems can be utilized to deliver a variety of medications transdermally, including analgesics, antibiotics, antivirals, and anticancer and arthritis medications. This review aims to describe vesicular approaches that had been used to overcome the barrier for the transdermal delivery of drug and also describes brief composition, method of preparation, characterization tests, mechanism of penetration of TEs, as well as highlighted various applications of TEs in medicine.


Subject(s)
Liposomes , Skin Absorption , Humans , Liposomes/chemistry , Administration, Cutaneous , Drug Delivery Systems , Skin/metabolism , Ethanol/chemistry , Drug Carriers/chemistry
17.
Poult Sci ; 103(1): 103236, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980750

ABSTRACT

Infectious bronchitis virus (IBV) is prevalent in Pakistan causing enormous economic losses. To date no clear data are available on circulating genotypes and phylogeographic spread of the virus. Hence current study assessed these parameters for all available IBV Pakistani isolates, based on the 9 new sequences, with respect to other Asian and non-Asian countries. Results indicated that all Pakistani isolates belonged to genotype I (GI), with more than half of them (16/27) belonging to the GI-24 lineage, against which no vaccine is available. Three possible introduction events of the GI-13 IBV lineage into Pakistan, based on the estimated IBV population using isolates from this study, were observed possibly from Afghanistan, China, and/or Egypt. These events were further analyzed on the S1 amino acid level which showed unique alterations (S250H, T270K, and Q298S) in 1 isolate (IBV4, GI-13) when compared to GI-1 lineage. Both GI-1 and GI-13 Pakistani strains showed close homology with homologous vaccine strains that are used in Pakistan. For GI-24 strains, none of the used vaccines showed substantial homology, necessitating the need for further exploration of this lineage and vaccine design. In addition, our findings highlight the importance of genomic surveillance to support phylogeographical studies on IBV in genotyping and molecular epidemiology.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Vaccines , Animals , Phylogeography , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Pakistan/epidemiology , Genotype , Phylogeny , Chickens , Poultry Diseases/epidemiology
18.
Cureus ; 15(10): e47481, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021864

ABSTRACT

Lactobacilli are facultative anaerobic, gram-positive, rod-shaped bacteria found in the normal flora of the oral cavity and the gastrointestinal and genitourinary tracts. This report presents a case of Lactobacillus rhamnosus infective endocarditis and provides echocardiographic evidence of its pathogenic potential. Furthermore, we provide an account of the first successful treatment with daptomycin to our knowledge. Additionally, we examine the limited literature available on this microbiological entity and attempt to relate this data to our case.

19.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004417

ABSTRACT

A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc., and in vivo pharmacokinetic parameters, such as area under curve (AUC), mean residence time (MRT), half-life (t1/2), time to reach maximum concentration (Tmax), and time to reach maximum concentration (Cmax). The outcomes have indicated the successful preparation of the films, as SEM has confirmed the smooth surface and uniform distribution of drugs throughout the polymer matrix. The films were found to be mechanically stable as indicated by folding endurance studies. Furthermore, the optimized formulations showed a DT of 13 ± 1 s and TDT of 42.6 ± 0.75 s, indicating prompt disintegration as well as the dissolution of the films. Albino rabbits were used for in vivo pharmacokinetics, and the outcomes were evident of improved pharmacokinetics. The drug was found to rapidly permeate across the buccal mucosa, leading to increased bioavailability of the drug: Cmax of 130 and 119 ng/mL of ITHC and EHBR, respectively, as compared to 96 (ITHC) and 90 ng/mL (EHBR) of oral solution. The conclusion can be drawn that possible reasons for the enhanced bioavailability could be the increased surface area in the form of buccal films, its rapid disintegration, and faster dissolution, which led toward the rapid absorption of the drug into the blood stream.

20.
Lancet Glob Health ; 11(12): e1955-e1963, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973343

ABSTRACT

BACKGROUND: Yemen continues to endure cholera outbreaks during ongoing conflict and destructive environmental events. Air raids have been used throughout the conflict to target military and civilian infrastructure. We aimed to assess the association between air raids and cholera incidence while taking into account geographical, environmental, economic, and demographic factors that drive outbreaks. METHODS: In this ecological modelling study, we used data from Sept 12, 2016, to Dec 29, 2019, for the number of air raids, vegetation coverage, surface water, precipitation, temperature, economic variables, and cholera case and population data to model the association between conflict and the weekly incidence of cholera (per 100 000 people) in Yemen. Data were transformed into weekly intervals and governorates were categorised according to air raid severity (the number of raids in the previous 3 months). We used a negative binomial generalised additive model that accounted for geographical location and environmental, temporal, economic, and demographic variables to estimate incidence rate ratios for the association between air raid severity and cases of cholera. FINDINGS: During the study period, 2 107 912 cases of cholera were reported in Yemen, and a minimum of 11 366 air raids were recorded. After controlling for relevant factors, compared with no air raids, all other levels of air raid severity were significantly associated with cholera incidence. The largest effect was noted in governorates with severe air raid levels (ie, ≥76 during the previous 3 months), which had an incidence rate ratio of 2·06 (95% CI 1·59-2·69; p<0·0001) for cholera compared with governorates with no air raids in the previous 3 months. Economic factors were also significantly associated with increased cholera incidence. INTERPRETATION: Air raids were significantly associated with the burden of cholera in Yemen, even after controlling for other relevant factors. Quantification of this relationship further shows that the cholera outbreak is largely a result of human action rather than a natural occurrence, and demonstrates the conflict's devastating effects on health. Our findings highlight the need for ceasefire and peacebuilding efforts, as well as infrastructure and economic restoration, to reduce Yemen's cholera burden. FUNDING: None. TRANSLATION: For the Arabic translation of the abstract see Supplementary Materials section.


Subject(s)
Cholera , Humans , Cholera/epidemiology , Yemen/epidemiology , Incidence , Disease Outbreaks , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...